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ABSTRACT
Memory disaggregation (MD) allows for scalable and elastic data

center design by separating compute (CPU) from memory. With
MD, compute and memory are no longer coupled into the same
server box. Instead, they are connected to each other via ultra-fast
networking such as RDMA. MD can bring many advantages, e.g.,
higher memory utilization, better independent scaling (of compute
and memory), and lower cost of ownership.

This paper makes the case that MD can fuel the next wave of
innovation on database systems. We observe that MD revives the
great debate of "shared what" in the database community. We envi-
sion that distributed shared-memory databases (DSM-DB, for short)
– that have not received much attention before – can be promising
in the future with MD. We present a list of challenges and opportu-
nities that can inspire next steps in system design making the case
for DSM-DB.

1 INTRODUCTION
Memory Disaggregation, MD for short, is emerging as a promis-

ing architecture in modern data centers, especially in the cloud [17,
70, 71, 73]. MD enables data center design based on independent
pools of compute nodes and memory nodes that are physically sepa-
rated but are connected via ultra-fast RDMAnetworks (Figure 1b) [17,
70, 71, 73]. A critical enabler for MD is hardware advances, espe-
cially networking technology. RDMA, e.g., Mellanox Connectx-6 [6],
achieves 0.8 𝜇sec latency and 200Gb/s throughput – close to local
memory performance though there is still a gap.

Overall, this is in contrast to traditional data centers that consist
of a collection of monolithic "converged" servers, where compute
and memory are tightly coupled in the same physical servers (Fig-
ure 1a). With MD, compute nodes focus on computation while
memory nodes are dedicated for provisioning memory.1 The com-
pute nodes may include small amounts of memory and memory
nodes may have some compute capability to run simple control
software. Thus, a compute node has strong computing power (e.g.,
100s of CPU cores) but limited local memory (e.g., a few GBs) while
a memory node has weak computing capability (e.g., a few CPU
cores) but abundant memory (e.g., 100s of GBs) to store data [70, 71].

MD brings many advantages for data centers [1, 17, 70, 71, 73].
(1) MD results in higher memory utilization with less fragmenta-
tion due to memory pooling. This translates into lower memory
consumption and lower total cost of ownership (TCO) as memory
is still an expensive resource. (2) MD provides independent elastic
scaling of compute and memory, which is very useful in the cloud.

1With storage disaggregation, there are also dedicated storage nodes, but this paper
focuses on memory disaggregation.
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Figure 1: Monolithic architecture vs. memory disaggrega-
tion

It allows users to request instances with arbitrary combinations
of compute and memory that existing monolithic servers fail to
provide. Also, compute or memory can be elastically adjusted with
workload changes. (3) MD achieves better reliability and lower op-
erational cost because compute and memory failures and upgrades
are independent, and do not affect each other. (4) MD provides users
virtually a near-infinite pool of memory for applications.

For all the above reasons, MD is receiving increasingly more at-
tention from industry. For example, PolarDB, a cloud-native DBMS,
relies on MD to improve memory utilization, and supports indepen-
dent scaling [17, 73]. Microsoft Azure has started to build an MD
system in the cloud to improve memory utilization [38]. IBM Cloud
provides MD in cloud data centers to significantly reduce cost, and
achieve better reliability [1]. Intel RSD (Rack Scale Design) [5] and
HP "The Machine" [32] also support MD at rack scale.

Position. We argue that the next wave in database system inno-
vation should be shared-memory designs enabled by RDMA-based
MD. Similar to previous design evolution in decoupling system
components in favor of scalability and elasticity, we believe that
MD is the key to move database design to the next frontier. We
present the challenges and opportunities in realizing distributed
shared-memory databases (DSM-DB) with MD. This vision paper
focuses on OLTP main-memory databases for high performance.

2 VISION AND CONTRIBUTIONS
Novelty andArchitectural Evolution. DSM-DB architectures

have been proposed in the 1980s [54]. However, slow networking
at the time has made these architectures infeasible due to the slow
access of remote memory. Thus, existing distributed DBMSs are
mostly shared-nothing, or recently, shared-storage architectures.
For decades, the shared-nothing architecture has been regarded
as the "gold standard" in distributed DBMSs due to their high per-
formance especially in supporting single-shard queries [54, 55].
Examples include MySQL Cluster, PostgreSQL Citus [20], Teradata,
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Figure 2: DSM-DB with memory disaggregation (MD)

MemSQL [18], VoltDB [8], SQL Server PDW, and Greenplum. As
the cloud becomes prevalent, shared-storage DBMSs start to gain
attention because they can best leverage the cloud infrastructure
of storage disaggregation. Examples include Amazon Aurora [60],
Google AlloyDB [2], Alibaba PolarDB [16], AlibabaAnalyticDB [67],
Microsoft Socrates [11], Microsoft Polaris [10], Huawei Taurus [23],
and Snowflake [21]. The shared-storage architecture is compelling
in the cloud because it can support independent scaling of com-
pute and storage, better elasticity, and fast crash recovery – all are
important design considerations for the cloud. However, the shared-
storage architecture still suffers from high memory consumption
and high cost because compute and memory remain tightly coupled.
This vision paper is a natural step forward arguing for a DSM-DB
architecture driven by MD and ultra-fast RDMA networking.

Distributed Shared-Memory Database Architecture (DSM-
DB) . Figure 2 shows the DSM-DB architecture that separates com-
pute and memory nodes. Memory nodes form a distributed shared-
memory (DSM) layer that is shared by compute nodes via an ultra-
fast RDMA network. Compute nodes have high computing power
with limited local memory while memory nodes have large mem-
ory capacity with limited computing power. Compute nodes can
communicate with each other via RDMA. DSM-DB is an OLTP
distributed main-memory DBMS that stores data in the DSM layer
with hot data being cached in the compute nodes’ local memories.

Expected Benefits. DSM-DB has many advantages over dis-
tributed shared-storage or shared-nothing databases. (1) DSM-DB
has independent elasticity of compute and memory due to MD.
(2) DSM-DB incurs lower total cost of ownership by increasing
memory utilization as the majority of data is stored in the dis-
tributed shared-memory while each compute node only keeps small
amounts of local private memory. (3) DSM-DB supports indepen-
dent failure of compute and memory nodes to achieve high avail-
ability. (4) DSM-DB is more robust to query and data skew that
is difficult to handle in distributed shared-nothing databases as
data can be easily resharded in DSM. (5) DSM-DB can achieve bet-
ter scalability with multi-masters (Sec. 4) that existing distributed
shared-storage databases would not have. Note that the perfor-
mance issues in DSM-DB due to MD can be mitigated (see Sec. 7).

Contributions. This paper presents a list of challenges in real-
izing DSM-DB. (1) DSM Layer (Sec. 3): This layer needs to provide
high durability and availability at a low cost. Also, it needs to
expose a rich API to the DBMS. (2) Concurrency Control (Sec. 4):
Multi-node concurrency control is challenging due to the lack of
cache-coherence across compute nodes. (3) Buffer Management

(Sec. 5): Managing data movement between local and remote mem-
ory requires rethinking how to leverage fast RDMA networking;
otherwise, due to the relatively high speeds of these layers in con-
trast to disk, the software layer can become the new bottleneck. (4)
Index Design (Sec. 6): It is non-trivial to develop indexes that fully
exploit RDMA, and that support highly-concurrent accesses.

3 DISTRIBUTED SHARED-MEMORY
The goal for having distributed shared-memory (DSM) in DSM-

DB is to manage a cluster of memory nodes (each provisioning large
memory) and provide unified memory space with the necessary
APIs for DBMSs to build on. Compute nodes access DSM via these
APIs. DSM-DB introduces a DSM layer to encapsulate all memory
management details and hide them from compute nodes for two
reasons. First, it enables independent elasticity of compute vs. mem-
ory. Second, it simplifies system design because each compute node
sees a unified infinite memory space and only focuses on query
processing logic inside a compute node without worrying about
the complicated memory management underneath.

Challenge #1: Exposing Abstract APIs. What APIs best sup-
port DBMSs? The APIs must include not only basic memory access
APIs, e.g., memory allocation, deallocation, read, and write, but
also database functions for near-data computing. Thus, DSM will
provide the following APIs to support database applications.

Memory Allocation APIs. DSM will provide memory allocation
APIs similar to those in a single memory node, e.g., memory allo-
cation, deallocation, and reallocation. However, memory address
representation is challenging as it cannot be the physical address
allocated via a programming language, e.g., malloc in C++. If a
memory node crashes then recovers, the memory space changes
and the old address cannot refer to the new memory. Thus, the
memory address must be a logical address, e.g., virtual node ID and
offset. To allocate memory efficiently and reduce memory fragmen-
tation, DSM-DB can allocate a giant continuous memory space and
keep track of memory usage in user space [57].

Data Transmission APIs. These APIs provide one- and two-sided
RDMA, memory access (read/write), and atomic operations for
concurrency.

Function Offloading APIs. These APIs will push down certain
database functions to memory nodes that leverage the computing
resources in DSM to reduce data transfer.

Challenge #2: Durability. A single memory node is volatile.
DSM must be durable to ensure that committed data is not lost. At
a minimum, a crash in a single memory node must not cause data
loss. Upon transaction commit, logs must be written to persistent
storage. However, log persistence needs to be highly-performant at
low cost so that it is not the bottleneck in main-memory databases.
The following are possible directions to be explored.

Approach #1. One possibility is to write logs to durable storage as
in main-memory databases [27]. DSM-DB can choose cloud storage,
e.g., AWS EBS and S3 are highly reliable with low cost, and can
achieve 99.999% and 99.999999999% durability, respectively [3, 4].
Cloud storage can be viewed as distributed shared storage that is
accessible by all compute and memory nodes. Crash recovery is
similar to that in main-memory databases [27]. However, writing
to cloud storage is relatively slow and is on the critical path for
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transaction commit. The same problem arises in main-memory
databases [27]. Thus, similar optimizations need to be revised for
DSM-DB, e.g., group commit [24, 28], command logging [41], log-
ging only base data but not indexes [25]. For instance, command
logging in DSM-DB cannot rebuild the same states upon crash be-
cause with multi-master, the system may not be able to determine
the global transaction order in advance.

Approach #2. Another possibility is to follow RAMCloud [49] that
uses memory replication to emulate durable storage. It writes a log
synchronously to 𝑘 different memory nodes (𝑘 = 3 in RAMCloud)
and a log write is considered "persistent" if all 𝑘 memory nodes
successfully write the log to their own main-memories. If one node
crashes, a new node may be identified and is restored from the
(𝑘 −1) replicated nodes. Compared to Approach #1, log persistence
is fast as it does not involve disk. But it may not guarantee 100%
durability as the probability of all 𝑘 memory nodes crashing is not
zero, and this could lead to data loss. Remedies could be battery-
backed memory [28] or persistent memory [12]. More research is
needed to investigate the interaction with RDMA.

Challenge #3: Availability. Main-memory is volatile and DSM-
DB can become unusable upon crash. The goal is to achieve reason-
able availability to minimize downtime while taking a low (mone-
tary) cost. A simple solution is to replicate data in different memory
nodes to support high availability. This consumes memory, and
hence is expensive. Another solution is to use erasure code [34, 52]
but the recovery process is long if there is a crash. The third solution
is to follow the RAMCloud approach [49] that stores data pages in
main-memory only once to reduce memory consumption. To im-
prove availability, RAMCloud periodically checkpoints data pages
from memory nodes to persistent store (this can be cloud storage in
DSM-DB). If a memory node crashes, its content can be recovered
by accessing the persistent store and possibly replaying some of
the logs. More research is required to speedup crash recovery since
accessing cloud-based persistent storage is relatively slow.

Existing Research. Early works on DSM, e.g., [39, 45, 51], do
not target MD. In those works, all nodes are homogeneous and
compute and memory nodes are not differentiated. Also, they do
not use RDMA and do not support durability and availability. Ex-
isting distributed memory systems, e.g., GAM [15], NAM [14, 66],
FarM [26], Redy [68], and Memcached [7] do not provide durability
or availability, and do not provide database-specific functions.

RAMCloud [49] is memory-based and offers durability and avail-
ability but cannot be used as the DSM layer in DSM-DB. First, RAM-
Cloud has no memory APIs (e.g., memory allocation and memory
read/write). Instead, it has key-value APIs [48]. Second, RAMCloud
does not provide database-specific functions, e.g., offloading. Third,
RAMCloud assumes TCP/IP rather than RDMA networking.

4 CONCURRENCY CONTROL
Since the compute nodes share access to the memory nodes in

DSM-DB, their concurrent accesses to the memory pool need to
be protected through a scalable concurrency control (CC) protocol.
There are a few new challenges when compared to the CC protocols
in the multi-core architecture, e.g., [13, 56, 63, 65].

Challenge #4: The Cache Coherence Challenge. In DSM-
DB, there is no hardware-level cache coherence among the compute
nodes. If a compute node updates a data item, another compute

node may not see the update immediately. This is different from the
conventional single-server multi-core architecture (with different
CPU cores sharing the memory) because hardware-level cache
coherence among different CPU cores is natively provided.

Cache coherence is important as it affects the design decision on
whether or not to use the local buffer memory in compute nodes. If
local buffers are used, then cache coherence needs to be addressed
at the software-level, which adds performance overhead. Otherwise,
the cache coherence problem is bypassed at the expense of more
remote accesses as the compute nodes will have to always access
data from remote memory. A related design decision is whether or
not to allow different compute nodes to access disjoint data parti-
tions, i.e., sharding.With sharding, the cache coherence issue can be
avoided when every data page is accessed by a single compute node.
The following three approaches to address the cache coherence
challenge need to be systematically evaluated.

Approach #1: No Cache, No Sharding (Figure 3a). Recent RDMA-
optimized CC techniques [61, 62, 66, 75] follow this approach. A
compute node reads and writes data remotely and does not store
any data in local memory. Data is stored in DSMwith a lock per data
item. Compute nodes use RDMA Compare & Swap (CAS) to acquire
a lock before accessing data. There is no cache coherence issue as
no local data exists in a compute node. Because a compute node
always accesses data remotely, this incurs performance overhead.

Approach #2: Cache, No Sharding (Figure 3b). Compute nodes
leverage local memory to perform reads and writes. This may create
cache coherence issues when two compute nodes update the same
data locally. To resolve conflicts, a software-level cache coherence
protocol, e.g., [15, 17], is needed to broadcast changes made by
a compute node. However, the effect of software overhead is un-
clear as many implementation details can affect performance, e.g.,
invalidation- vs. update-based, one- vs. two-sided RDMA, fetching
missed data from neighboring compute nodes or from the shared-
memory layer. To reduce cache coherence overhead, a lazy cache
coherence protocol can trade mutual consistency for performance.

Approach #3: Cache, Sharding (Figure 3c). In this approach, we per-
form logical sharding, where each compute nodemaintains sharding
information (e.g., range information) of the data it is responsible for.
CC is similar to the case in distributed shared-nothing databases,
e.g., [29]. However, the difference is that a compute node does not
store the entire data shard because of the limited local memory
although it can cache some hot data. The advantage is that there is
no cache coherence issue due to sharding. Also, this approach can
best leverage local memory. Another advantage is that elasticity
can be supported very well, e.g., if a new compute node is added,
only the metadata (e.g., range information) is copied into the new
node without physically moving data (due to logical sharding), and
the obsolete data from the old compute nodes can be recycled asyn-
chronously. The downside is in cross-shard transactions. However,
this can be alleviated via dynamic resharding [9, 40] that is efficient
in DSM-DB since the DSM layer can transfer data quickly.

Challenge #5: Rethinking Distributed Commit. Are the dis-
tributed commit protocols (e.g., 2PC) [50] – widely used in dis-
tributed shared-nothing databases – still applicable in DSM-DB?
Observe that distributed commit may not always be relevant in
DSM-DB depending on which architecture in Figure 3 is adopted.
If DSM-DB uses a no-sharding architecture (Figure 3a or Figure 3b),
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Figure 3: Concurrency control design tradeoffs in DSM-DB

there is no need for distributed commit. If there is no sharding be-
tween different compute nodes, every compute node can read/write
all the data. Thus, every transaction will be executed by a single
compute node, which does not require distributed commit.

In contrast, if DSM-DB uses sharding (Figure 3c), distributed
commit may become relevant. Each compute node is responsible
for a shard of data pages and a transaction may access pages be-
longing to different compute nodes. More research is needed to
leverage RDMA primitives in distributed commit protocols. Notice
that sharding data among memory nodes does not necessarily man-
date using 2PC. If a compute node uses one-sided RDMA to access
memory nodes, it knows whether or not a write is successful.

Challenge #6: Revisiting Existing CC Protocols. In DSM-
DB, compute nodes access remote memory via RDMA. It is costly
to implement locks over RDMA (compared with the conventional
local locks). This has implications to both lock-based and non-lock-
based CC protocols that need to be revisited in DSM-DB.

Lock-based CC. Lock-based concurrency control protocols, e.g.,
2PL, rely on fine-grained locks to improve the level of concurrency,
e.g., shared-exclusive locks, intention locks. It is challenging to
implement these lock variants on RDMA and the implementation
overhead varies. RDMA can only implement a simple exclusive
spinlock within a single round trip through the CAS atomic primi-
tive. Advanced lock types require more RDMA round trips, e.g., an
RDMA shared-exclusive lock needs at least 2 round trips.2 Thus, it
is unclear whether advanced lock types could be used for lock-based
CC algorithms. It remains open if the allowed extra concurrency
can offset the performance overhead of the advanced locks.

Non-lock-based CC. RDMA can also impact non-lock-based con-
currency control protocols, e.g., timestamp-based CC, MVCC, and
optimistic CC though in a mild way. These protocols need latches
using RDMA to exclusively access some shared states, e.g., global
timestamps. Another related optimization is how to generate times-
tamps. One-sided RDMA (RDMA Fetch & Add) is more preferable
than two-sided RDMA in case that the centralized timestamp gen-
erator becomes a bottleneck. It is interesting to investigate other

2One way to implement shared-exclusive locks is to use a lock metadata and an
RDMA spinlock on the remote memory. The lock metadata records the number of
holders/waiters on different lock modes. The RDMA spinlock guarantees atomicity
when modifying the lock’s metadata. It needs at least two RDMA round trips where
Round #1 is to acquire the lock and read the metadata and Round #2 is to update the
metadata and release the lock.

approaches (e.g., vector timestamp [66] and clock synchroniza-
tion [61]). A systematic evaluation of different concurrency control
protocols over RDMA is necessary.

Challenge #7: SupportingMassiveConcurrency. Priorwork
has examined concurrency control for 1000s of cores per compute
node [13, 56, 63, 65]. DSM-DB can enable ultra-high number of cores
(e.g., millions) accessing the same shared-memory by supporting
many compute nodes (e.g., 10s to 1000s). It would be interesting
to re-evaluate and re-think CC protocols to support extreme con-
currency, e.g., millions of cores. This may require distinguishing
the local concurrency control (within the same compute node) and
global concurrency control (across different compute nodes).

Existing Research. There are a number of existing works in
concurrency control that are relevant to DSM-DB.

Concurrency Control in Multi-Core Databases. Most CC work, e.g.,
2PL, MVCC, and OCC are designed for multi-core setups [13, 56,
63, 65]. They share the implicit assumption of having hardware-
supported cache coherence, which does not exist in DSM-DB.

Concurrency Control in Distributed Shared-Storage Databases
(DSS-DB). DSS-DBs, e.g., Aurora [60], PolarDB [16], Socrates [11],
and Taurus [23] do not support concurrent transactions among
multiple compute nodes in order to avoid conflicts. Instead, only
the primary node can support writes (aka single-writer) while all
the other nodes are replicas for read-only transactions. However,
DSM-DB can support multi-writers where every compute node
supports writes to improve write scalability.

Concurrency Control in Distributed Shared-Nothing Databases
(DSN-DB). Concurrency control is extensively studied in DSN-
DBs [19, 29, 58]. While it is possible to adapt these techniques
into DSM-DB by sharding the data among different compute nodes,
there are two differences in DSM-DB that may inspire innovation.
(1) A compute node does not physically store the entire data shard
due to the limited local memory. (2) Data/state can bemoved quickly
among compute nodes via the DSM layer.

Other Works. PolarDB considers MD [17, 73] but only the pri-
mary node can write data. There are concurrency control protocols
optimized for RDMA, e.g., [61, 62, 66, 75], but they do not leverage
local memory in order to bypass the cache coherence issue.

5 BUFFER MANAGEMENT
Accessing local memory in a compute node is still faster than

accessing RDMA-enabled remote memory in DSM. Thus, it makes
sense to cache hot data in the limited local memory (of compute
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nodes) to minimize remote memory accesses. But there are unique
challenges for the buffer management in DSM-DB.

Challenge #8:Designing Light-weight BufferManagement.
Existing buffer management is optimized for the hierarchy where
there exists a huge performance gap between a cache hit and
miss, e.g., the latency gap between main-memory and disk can
be 100,000×. Thus, the goal of existing buffer management is to im-
prove the cache hit rates by developing optimized techniques, e.g.,
optimizing buffer replacement policies [30, 43, 46, 53] and storing
compressed pages in the buffer [44]. In DSM-DB, we need to rethink
buffer management because the performance gap between local
and remote memory is significantly narrowed, e.g., down to 10× or
less, due to fast RDMA networking. Thus, we need to focus on the
actual running time instead of just cache hit rates. That is because,
software overhead, e.g., lookup cost, maintenance cost to reorga-
nize buffer contents (in, say LRU), and synchronization cost due to
multi-threaded access may become the performance bottlenecks
for fast RDMA. These have traditionally not been major concerns
for slower devices, e.g., SSDs or HDDs. Thus, research is needed
to evaluate the overhead of popular buffer management policies,
e.g., LRU, LRU-K [46], 2Q [31], CLOCK, and ARC [43]. New buffer
management policies must consider actual running time instead of
purely optimizing cache hit rates.

Buffer management in DSM-DB is different from the buffer man-
agement optimized for the hierarchy of local memory and local
persistent memory (PM) [59, 74], because CPU can directly operate
on data stored on the local PM if there is a cache miss. However, in
DSM-DB, data must be transferred from remote memory to local
memory first before being accessed if a cache miss happens.

Another direction is to evaluate the effectiveness of caching com-
pressed pages. Depending on different data types and compression
techniques, decompression overhead might even be higher than
directly fetching uncompressed data from remote memory. Thus,
light-weight compression is important for DSM-DB.

Challenge #9: Caching vs. Offloading. Caching and offload-
ing are two popular techniques to improve the performance in disag-
gregated databases. A recent study [64] shows that caching and of-
floading are not orthogonal to each other on storage-disaggregated
databases with conventional TCP/IP networking [64]. It is impor-
tant to re-investigate their interaction within DSM-DB for the fol-
lowing reasons: (1) DSM-DB uses RDMA that may make caching
more favorable. Intuitively, if network latency is zero, it is favorable
to bring data from remote memory to local memory upon a cache
miss because compute nodes have better compute power. (2) The
analytical model in [64] has high software overhead to decide when
to cache or offload, while DSM-DB requires a light-weight model.
(3) DSM-DB targets OLTP applications that involve updates, which
can incur inconsistencies between the cached data and the under-
lying data (due to pushing down).

Existing Research. Existing work on MD has not focused on
the challenges of buffer management mentioned above because they
still use disk-based buffer management for MD, e.g., [17, 70, 71, 73].
There are other works on using remote memory as a buffer of disk,
e.g., [37, 69]. However, this work focuses on the buffer management
for the two-level hierarchy with local memory and remote memory
(without involving disk) where all the data is stored in remote
memory with hot data being cached in local memory.

6 INDEX DESIGN
RDMA-basedMD also has profound implications on index design

for DSM-DB that we highlight in this section.
Challenge #10: RDMA-Conscious Index Design. Index de-

sign needs to be hardware conscious to truly achieve good perfor-
mance. All state of the art indexes used in modern systems heavily
rely on hardware conscious design, e.g., Bw-tree [36], Masstree [42],
ART [35], and LSM-tree [22, 47]. In DSM-DB, compute nodes access
remote memory, i.e., the DSM layer, via RDMA. The intrinsic prop-
erties of RDMA networking need to be at the core of index design.
There are numerous new hardware related design factors to explore
that do not always have an equivalent context with past hardware
properties. These factors include: (1) Which RDMA primitive to
use, e.g., one- or two-sided RDMA, synchronous or asynchronous
RDMA; (2) How to best utilize the limited buffer memory in each
compute node; (3) How to reduce software overhead to best leverage
high-performance RDMA; and (4) How to exploit the computing
capability of memory nodes to reduce data transfer.

These design choices are not independent, e.g., having bigger
local memory gives preference to using one-sided RDMA in favor
of fewer round trips. Also, using near-data computing impacts
the way of using buffers. Another direction is to design indexes
that adaptively balance available compute, memory, and RDMA
resources to prevent imbalanced resource utilization, e.g., a compute
node’s CPU is fully saturated while a memory node’s CPU or RDMA
bandwidth are largely idle.

While we may able to utilize and build on past research in many
cases, in other cases it might be necessary to reconsider and drop
design choices that are considered state of the art. For example, if
we can access remote nodes extremely fast, then approaches that
rely on sketches and summaries to filter data remotely may prove
less impactful in this context.

Challenge #11: Concurrent Index Operations. How to han-
dle concurrent accesses (reads/writes) from a very large number
of compute nodes? We expect a stronger requirement for concur-
rency with MD because more nodes (and thus more queries) will
have access to the same memory on shared data copies. Although
existing indexes support multi-threaded access via lock-based or
lock-free designs, e.g., Bw-tree [36], it is unclear how they perform
in DSM-DB due to (1) Expensive RDMA locking overhead; and
(2) No hardware-supported cache coherence. Also, for lock-based
approaches, e.g., ART [35], it is unclear what lock types to use.
Thus, we need to design new multi-threaded indexes that optimize
for multiple compute nodes accessing DSM via RDMA.

Besides that, LSM-based indexing [22, 47] can be worth inves-
tigating because it naturally fits the local memory and remote
memory hierarchy. For example, LSM-trees can hold filters and
fence pointers in compute nodes as they help protect from unnec-
essary round trips. More research is needed to reduce software
overhead and leverage the compute capabilities of memory nodes,
e.g., offloading LSM compaction to memory nodes.

Existing Research. Sherman [62] is an optimized B-tree for MD.
It uses one-sided RDMA to access remote memory, and addresses
concurrent accesses using RDMA-based exclusive locks and version
validation. To reduce network round trips (due to one-sided RDMA),
Sherman [62] caches all internal nodes into local memory, which
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consumes more memory. Moreover, Sherman does not leverage
the compute resources in memory nodes. Ziegler et al. propose
an RDMA-optimized B-tree structure that spans multiple memory
nodes [75], but it does not target MD and does not use the compute
nodes’ local memory. RACE is a hash index for MD [76] but it only
uses one-sided RDMA. It implements a lock-free multi-node CC
protocol for the hash buckets. Overall, while there are a few prior
works targetingMD, there is still big room for improvement because
existing works have not fully leveraged RDMA characteristics.

7 DISCUSSION
Performance. The performance of DSM-DB due to MD can be

mitigated by several approaches. (1) Use more local memory in
each compute node. As demonstrated in [73], caching 50% data in
local memory achieves almost no performance drop. Obviously,
there is a tradeoff between more local memory capacity and mem-
ory utilization. But MD introduces flexibility in controlling local
memory size and can break the memory capacity limit of a sin-
gle server. (2) Optimize buffer management as in Sec. 5. (3) Send
only logs (i.e., log-as-the-database) as in Aurora [60]. (4) Leverage
near-data computing in the shared-memory layer to reduce data
movement [72].

Distributed Shared-Nothing vs. DSM. For the main-memory
DBMSs considered in this paper, there are the DSN-DBs and DSM-
DBs choices, so what is the difference between the two, really?

It is true that DSN-DBs can benefit from fast RDMA to reduce
network communication cost, but maybe not too much because
DSN-DBs are purposely designed for slow networks by carefully
developing techniques to localize transactions and query processing
to minimize network data accesses. With RDMA, one can relax the
network accesses by allowing every node in DSN-DBs to access the
main-memory of every node, which somehowmimics DSMaccesses.
However, that is not the DSM-DB this paper is advocating for
because that does not support memory elasticity and independent
memory scaling. In order to do so, we need to have asymmetric
architecture of "compute nodes" and "memory nodes" with different
compute and memory capabilities. Also, the memory nodes form a
DSM layer, which becomes DSM-DB’s proposal. A benchmark that
systematically compares the DSN-DBs and DSM-DBs is required
to best understand the two designs. We believe that DSM-DBs can
better leverage fast RDMA networking than DSN-DBs.

Observe that DSN-DBs and DSM-DBs are not incompatible. For
large-scale applications that require cross data-center deployment,
DSM-DBs alone would not work because RDMA is not applicable
due to the long latency dominated by speed-of-light delays among
data-centers. Thus, a hybrid design that combines shared-memory
and shared-nothing is required with shared-memory within the
same data center and shared-nothing across data centers.

Note that we skipped the discussion of distributed shared-storage
(DSS) since this paper focuses on main-memory databases. But if we
involve storage, then DSS-DBs are implied in DSM-DBs. The above
discussions hold between DSM-DBs and DSN-DBs with storage.

8 RELATEDWORK
Distributed Shared-Storage Databases (DSS-DB). DSM-DB

has the potential to address several issues that are found challenging

in DSS-DBs, e.g., Aurora [60], Socrates [11], PolarDB [16], and
Taurus [23]. (1) DSM-DB can address the multi-master issue – a
challenging issue in DSS-DBs – by leveraging fast RDMA and the
DSM layer to quickly synchronize the states between compute
nodes. Note that although PolarDB uses RDMA [16], it does not
efficiently support multi-master because a compute node cannot
use one-sided RDMA to access the storage nodes. (2) DSM-DB can
easily support memory elasticity, independent scaling and failure
of compute and memory that are not possible in DSS-DBs.

Distributed Shared-Nothing Databases (DSN-DB). In addi-
tion to supporting memory elasticity and independent scaling,
DSM-DB has the potential to efficiently address the distributed
transaction issues in DSN-DBs (e.g., VoltDB [8], MemSQL [18], and
Hekaton [25]), because the RDMA-connected DSM layer in DSM-
DB provides a fast way to reshard data among compute nodes. This
makes DSM-DB more resilient to skew due to fast resharding.

Distributed Main-Memory Databases. DSM-DB is differ-
ent from existing distributed main-memory databases (e.g.,
VoltDB [8], MemSQL [18], and Hekaton [25]) because DSM-DB is
shared-memory while these databases are shared-nothing. Simply
adding RDMA networking to these shared-nothing main-memory
databases does not solve the memory elasticity and independent
scaling problems. It is required to have separated notions of "com-
pute nodes" and "memory nodes" and allow compute nodes to access
memory nodes via abstract APIs, which is DSM-DB’s proposal.

NAM (Network-Attached Memory) [14, 66]. NAM is an in-
novative architecture that allows compute nodes to access a shared-
memory pool of memory nodes. However, NAM is not designed
for MD. The compute and memory nodes in NAM are logically de-
coupled, while DSM-DB emphasizes physical decoupling due to MD.
Although logical decoupling has the potential to co-locate compute
and memory nodes (where each "node" is a process) to reduce net-
work access, physical decoupling enables additional benefits, e.g.,
independent failure and crash handling of compute and memory
nodes, and better resource utilization and elasticity. Besides that,
this vision paper has a wider scope that also includes durability,
availability, DSM APIs, buffer management, and index design.

Impact of MD on Databases. Recent research investigates the
impact of MD on databases, e.g., [33, 70–72]. These works target
single-node databases (with a single compute node and a single
memory node) instead of a distributed DBMS as in DSM-DB. Also,
they focus on OLAP databases while DSM-DB focuses on OLTP
databases. PolarDB incorporatesMD [17, 73], but is still a disk-based
DBMS with a single master node. In contrast, DSM-DB is main-
memory-based that supports multi-masters, where every compute
node can process read/write requests to improve scalability.

9 CONCLUSION
Memory disaggregation (MD) is regarded as the next technol-

ogy breakthrough by major tech companies. This paper presents
our vision on the impact of MD to distributed databases, in par-
ticular OLTP main-memory databases. We envision that the dis-
tributed shared-memory (DSM) architecture that has been under-
appreciated in the past can be promising in the future due to MD.
This paper highlights new problems and challenges in realizing
DSM-DB with memory disaggregation over RDMA.
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